

EHC 시스템을 위한 인산에스테르계 전용 실시간 Water Sensor 소개 [SEW센서]

㈜솔지

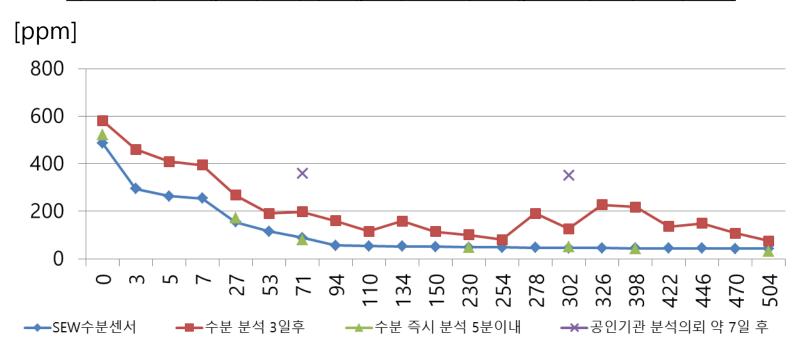
EHC OIL은 왜 실시간으로 수분 모니터링을 해야 하는가?

- EHC Oil 열화의 첫 번째 원인은 수분 오염에 의한 가수분해로, 이로 인하여 산과 알코올이 발생하며 이러한 산 발생으로 산가가 0.2 이상 증가 시 값비싼 오일을 교환해야 함. 따라서, EHC Oil의 수분 상시 감시 및 신속한 제거가 필수임.
- 2. EHC Oil(인산에스테르계)은 친수성 오일로 대기와 접촉 시 수분을 쉽게 흡수함. 따라서 Lab.(실험실) 테스트 시 '즉시 분석', '대기 분석(1일, 일주일, 10일)'에 따라 수분 값이 상이함.

[사례1]

	즉시분석 (시료채취 후 5분이내)	3일 후	일주일 후	한달 후
칼피셔 수분측정기 (실험실 분석)	254 ppm	399 ppm	453 ppm	966 ppm
SEW센서 (온라인 분석)	248 ppm	-	-	-

표) 인산에스테르계 제어유 칼피셔 분석 VS 온라인분석, 칼피셔 분석 지연 시간에 따른 수분량 변화 (시료 보관은 전용 시료병에 뚜껑 <u>밀봉 후</u> 보관, Fyrquel EHC)


결론: 상기 결과와 같이 인산에스테르계 제어유의 경우 랩 테스트 시 시료 대기 시간에 따라 수분값의 변동이 심함.

즉, 실제 운전되고 있는 제어유의 수분 오염상태가 254ppm일 경우에 (즉시 분석) 일주일 대기 후 분석 시 수분값이 약 200ppm 증가되어 실제 수분 오염 상태보다 높게 측정될 위험성이 있음으로 온라인 설치하여 실시간 감지하여야 함.

EHC OIL은 왜 실시간으로 수분 모니터링을 해야 하는가?

[사례2] 비교 : 온라인분석/칼피셔 즉시분석/칼피셔 3일후 분석/ 공인기관 약7일 후 분석

상기 시험데이터는 약 500ppm 정도로 오염되어 있는 인산에스테르계 제어유를 504시간 동안수분제거 여과기를 가동하여 수분이 감소하는 데이터를 그래프화 한 것임. SEW수분센서에서 측정된 수분 값과 칼피셔 즉시 분석 데이터 값은 거의 일치하나, 3일 대기 후 칼피셔로 측정한 수분데이터는 실제 수분 값보다 최소 100에서 최대 250ppm 보다높게 측정됨.

SEW 수분센서의 경우 수분 여과기 가동 시간에 따라 점진적으로 수분이 감소되나, 랩 테스트의 경우 수분 측정값이 헌팅함.

왜, EHC OIL에는 SEW SENSOR 이어야 하는가?

인산에스테르계 제어유 전용 수분센서 !!! SEW센서(SOLGE EHC OILS WATER SENSOR) !!!

<u>인산에스테르계 오일의 수분량을 실시간으로 가장 정확하게 측정하는 방법</u>

1. 우수한 해상도 : 0.1 ppm

- 잘 관리되는 대부분의 인산에스테르계 EHC Oil이 운전되는 Oil의 수분가를 측정해 보면 대략 100~500ppm 이하로 포화도가 1%(RH)이하여서 SEW처럼 해상도가 정밀한 센서가 아니면 정밀하게 측정할 수가 없음.
- EHC Oil은 운전온도 약 60℃에서 4000ppm 이상이 되어야 포화되기 때문에 일반 시중 공급되는 대부분의 상대습도센서는 해상도가 충분하지 않아 약 700ppm이하의 수분오염상태에서는 상대습도가 1%로 이하이기 때문에 50ppm과 500ppm 수분 오염된 시료유를 모두 동일하게 상대습도 1 %로 측정되나, 본 센서는 해상도가 기존 상대습도 센서보다 1000배 이상 더 정밀하기 하기 때문에 최소 0.1ppm 부터 4000ppm까지 측정됨.

시중의 일반 상대습도센서는 약 최소 700에서 4000ppm 범위의 수분오염 상태 측정이 가능하므로 현실적으로 적용이 불가함.

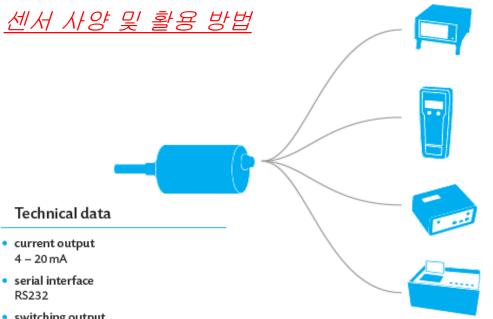
2. 친수성 인산에스테르 오일

- 인산에스테르계 오일의 특성 상 대기의 수분(습기)이 아주 쉽게 오일에 흡수되어 수분가가 증가함.
- 심지어 샘플링 후에 병마개를 확실하게 닫아 밀봉하여도 수분이 침투 하여 수분가가 상승함.
- 따라서 실시간으로 수분가를 측정을 해야 함.

SEW SENSOR (SOLGE EHC OIL WATER SENSOR) 특성

인산에스테르계 제어유 전용 수분센서 !!! SEW센서(SOLGE EHC OILS WATER SENSOR) !!!

인산에스테르계 오일의 수분량을 실시간으로 가장 정확하게 측정하는 방법


- SEW 센서는 인산에스테르계 제어유 전용 수분센서로 인라인으로 EHC 시스템에 설치되어 실시간으로 제어유의 수분오염상태를 모니터링 함.
- 온도 보상 기능에 의한 정확한 수분 함유량 측정
- 현존 하는 유일의 인산에스테르계 제어유의 수분 함유량을 상대습도(RH%)가 아닌 절대수분(ppm)으로 측정하는 유일한 온라인 센서

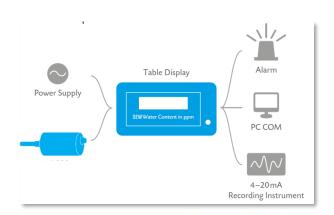
- 해상도: 0.1ppm
- 칼피셔 수분 측정기는 칼피셔 시약와 같은 소모품이 주기적으로 교환되어야 하나 사용기간 중 별도의 소모품이 없음.
- 출력값: 절대수분(ppm, %:RH%가 아닌 절대 수분값임.)
- 본 센서는 ASTM D4928, D1533, D6304 칼피셔 수분측정기와 호환되도록 캘리브레이션 되어 공급됨.

SEW SENSOR (SOLGE EHC OIL WATER SENSOR) 사양

stationary display

(EHC 시스템에 인라인 설치하여 상시 감시) 현장 디스플레이를 통한 상시 감시 혹은 통신 을 통한 특정 장소에서 모니터링 선택

mobile data logger 옵션으로 데이터 로거 구입 시 SEW센서와 체결하면 휴대용 인산에스테르계 제어유 수분측정기로도 사용 가능, 즉 시료 채취하여 센서를 시료병에 담근 후 데이터 로그를 통하여 수분 함유량 측정


data logger with Internet linkage

multi-channel data logger

- switching output 24V DC
- typical measurement range 10 - 20'000 ppm (upper range limited to oil saturation)
- temperature of liquid -20°C to +70°C*
- supply 18 V - 24 V DC / max. 70 mA
- system pressure up to 300 bar
- standard mounting & immersion depth 50 mm with 1/2-inch thread**
- protection type IP65

Accessories

- stationary display
- mobile data logger
- data logger with Internet linkage
- multi-channel data logger

설치 사례

본 여과기는 발전산업의 인산에스테르계 유압작동유(EHC Oils)의 오염물(수분,입자)과 열화물(산, 바니쉬)을 제거하는 여과장치로 자체 입자 센서와 수분센서가 장착 되어 유체의 상태 모니터링과 Treatments가 가능한 다기능 여과기임

설치 사례

Particle Sensor

GFS Water Sensor